

Automatic Feeding, Solid Fuel Boiler User Manual

Окуруч 130-160-180-200-250

ÜKYP/Y 300-350-400-450-500-600

ÜKYS/Y 200-...-800

ÜKYS/3G-Y 120-...-2000

ÜNLÜSOY

Yapı Malzemeleri Sanayi ve Ticaret Ltd. Şti. Pancar Organize Sanayi Bölgesi, 2. Etap No:2, Torbalı – İZMİR/TURKEY Tel: +90 444 35 32, Fax: +90 232 469 2412 www.unmak.com

CONTENTS

CONTENTS	1
INTRODUCTION	2
SHIPPING AND TRANSPORTATION	3
SELECTION OF INSTALLATION PLACE	4
SAFETY PRECAUTIONS	6
ELECTRICAL INSTALLATION INSTRUCTIONS	8
INFORMATION ABOUT COMBUSTION	10
BOILER FEATURES	12
RULES FOR HEATING INSTALLATION	27
CONTROL PANEL AND USER INTERFACE	34
STARTING UP	
FUEL FEEDING – STAND BY ADJUSTMENT	
MAINTENANCE AND BOILER CLEANING	39
INFORMATION ON USAGE ERRORS	40

KK-07EN Rev: 230817

This booklet covers the following models:

 ÜKY/Y
 25-34-45-60-80-100

 ÜKY/Y-KB
 25-34-45-60-80-100

 ÜKYP/Y
 130-160-180-200-250

 ÜKYP/Y
 300-350-400-450-500-600

 ÜKYS/Y
 200-225-250-300-350-400-450-500-600-700-800

 ÜKYS/3G-Y
 120-150-180-210-240-270-300-330-360-390-420-450-480-510-540-600-660-720-780-840-900-1000-1100-1200-1300-1500-2000

INTRODUCTION

We would like to thank you for your choice of ÜNMAK automatic feeding solid fuel boilers.

Please read the user manual carefully before installing and operating your product and keep the instruction manual for the duration of use. Do not touch or mix any part of the product except where permitted in the user manual.

The installation, maintenance and service of the boiler require a specialist

technical team.

These operating instructions and regulations should be considered for the installation of the boiler, selection of the location for installation, installation of the boiler water installation and the design of the chimney.

ÜNMAK automatic fuel feed boilers are high-efficiency, cast iron hot water boilers designed to burn only solid fuel. 10-18 mm diameter coal (sold in the market under the name of hazelnut coal), and granule size up to 25x25 mm are suitable for burning coal. These boilers are only used for heating of the heating system and are not suitable for direct water heating. However, it can produce hot water with the help of a boiler or heat exchanger. The energy required for domestic water will be taken from the boiler energy.

ÜNMAK automatic fuel feed boilers are heating boilers convert the chemical energy of the fuel in the fuel loading tank to the heat energy by burning and load it on the water which is the heating fluid. Excessive fuel accumulation to the combustion chamber will be kept longer than necessary and the fuel will take longer to burn.

The combustion circuit, the fan, the supply auger and the system pump control are carried out by the electronic control board supplied with the boiler.

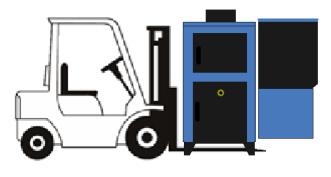
ÜNMAK automatic-loading boilers can only burn granular fuels up to 25 mm in size. Powdered fuels will not be an efficient combustion for flying in the combustion chamber with the system fan. Powder fuel will collect more moisture, even in the spiral will cause helical blockage. Depending on the calorific values of the fuels, the heat from the boiler to the water may exceed the declared values.

Please read your user manual carefully and it should be kept with the warranty certificate for the life of the boiler.

SHIPPING AND TRANSPORTATION

ÜNMAK solid fuel stocked boilers are manufactured from thick sheet. The boilers are packaged in one piece. Boiler fans, boilers up to 60.000 kcal / h (including) Capacity are located in the material box on the boiler.

1. Boiler Group: It is shipped with boiler insulation and outer jacket covered.


2. Accessories: Control panel, pump (pump for capacities under the boiler including 60.000 kcal / h capacity), operating instructions with warranty certificate and boiler accessories are included in the boiler package.

Safe transport of the product

Solid fuel boilers are heavy products, so care should be taken when transporting the boiler to the place where it will be installed. The equipment used to lift and transport the product must therefore be of sufficient capacity.

In order to prevent damage to the boiler's outer plates and the boiler during transportation;

In small boilers, it must be ensured that the hoisting rope does not damage the painted thin sheets of the boiler and the reducer and fan group under the hopper while carrying the hoisting rope from the forklift stands on the chassis and transporting the boiler with the help of crane or hoist.

It is also convenient to remove the large cauldrons from the forklift stands or the transport ring on the boiler. If the connection ropes are to be passed under the boiler when lifting by crane, preventive action should be taken to prevent the top of the boiler from being crushed by the ropes. Floor standing crane must be lifted without crane. When transporting in cold weather, the boiler should not be lifted suddenly in case of freezing of the rope from the cold.

Pay attention to avoid damage to the gear unit and fan under the hopper during transport.

When removing the packaging around the boiler, hard and sharp objects should not be used to prevent damage to the painted boiler plates under the packaging.

SELECTION OF INSTALLATION PLACE

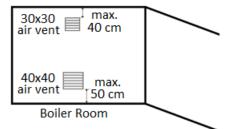
The space where the boiler is installed must have sufficient free space for the installation, combustion and maintenance of the boiler. For the need of service, the gear unit and the shaft to which the shaft is connected should be easily spaced away from the wall. For this purpose, the dimensions in the paragraph titled "Mounting Dimensions" must be applied.

There should also be sufficient air circulation for efficient combustion, the chimney design must meet the required traction values for the model used and comply with the construction criteria given in the manual. The boiler should never be installed in open spaces, balconies, living areas (kitchen, living room, bathroom, and bedroom), explosive and flammable materials.

The door of the boiler room must not be opened directly to the escape ladder or general use ladder and must be opened to a security hall. In boiler rooms with thermal capacities of 50 kW-350 kW, there must be at least one door, a floor area of more than 100 m2 or at least 2 exit doors in boiler rooms with a thermal capacity of more than 350 kW. The exit doors must be placed as far opposite as possible, at least 90 minutes resistant to fire, smoke-proof and self-closing.

At least one of the doors must be opened directly outwards and outwards. If it is possible to open a door directly from the boiler room, this creates the most appropriate solution. The door of the boiler room must not be opened directly to the escape ladder or general use ladders and must be opened to a common hall or corridor.

It is recommended to have a threshold of at least 10 cm in the doors opening into the building from the boiler room. If it is possible to illuminate the boiler room naturally, it should be ensured that the lighting openings do not come under the other windows of the building. If artificial lighting is done, a system that does not dazzle but illuminates the apartment must be properly installed. The main switchgear and panels for the boiler room should be placed around the entrance door and should be of leak-proof type. There should be a fire tube in the boiler rooms.

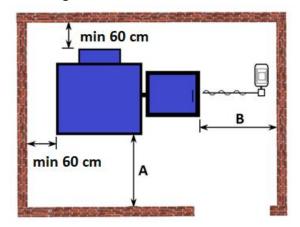

One of the purposes of placing the boiler on the concrete base in the boiler room is to prevent the fan from absorbing dust from the ground. Ventilation can be done either naturally or in a forced manner. Ensure that the fresh air intake shaft is at the floor level and the air outlet nozzle mouth at the ceiling level.

At least 1 6 kg dry chemical powder fire extinguishing device and at least 1 fire cabinet should be provided in the boiler room.

If natural gas or liquid fuel boilers are also used in the same boiler room, a tear surface must be designed.

The installed space must be directly connected to the external environment, allowing the access of fresh air. One of the grilles should be at most 40 cm below the ceiling of the boiler room and the other should be at least 50 cm above the floor. These grilles should be open continuously. The lower vent should be at least 40 x 40 cm and the upper grille should be at least 30 x 30 cm. Pets should not be fed, smoke and any food and beverages that may be affected should not be stored in the boiler room (boiler room).

All electrical and water installations must be carried out by authorized plumbers, in compliance with all applicable legal and technical rules, by the relevant regulatory authorities.


The fuels to be burned in the boiler should be kept at a distance of at least 800 mm. It is recommended to store fuels in a separate space.

Boilers must be installed on a concrete base 10 cm above the base to protect the solid fuel from the moisture of the water. The concrete base prevents the fan from absorbing fuel or ash dust in the ground.

Lying of tiles with tile and tile stones facilitates cleaning.

It is inconvenient to have flammable, caustic and flammable materials in the boiler room.

Mounting dimensions:

The boiler room must be of a size to provide the minimum dimensions given in the picture below. When the boiler is placed, it can be done easily to add to the hopper, the reducer and shaft underneath the hopper can be easily removed, enough distance should be left for the service to work comfortably.

Dimension A: 60 cm greater than the opening of the boiler door;

Measure B: Select the spindle removal distance.

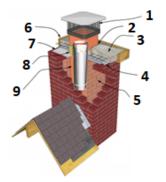
If the above measurements are observed, a minimum of 8 m3 of volume requirement in the regulations is ensured.

I There should be no faulty and unsafe power lines in the boiler room.

The 230 V electrical connection from the control panel must be connected to the mains via the W automaton.

SAFETY PRECAUTIONS

The electrical installation of this product must be performed by qualified personnel in accordance with the instructions given in this manual and in accordance with applicable local or national regulations.


A

THIS PRODUCT MUST BE CONNECTED TO THE ELECTRICITY WITH EARTH LINE!

The boiler must be connected to a chimney in accordance with the specifications specified in the operating instructions and the relevant regulations. The chimney must provide the traction value required by the connected boiler. Your boiler should not be operated without a chimney connection and there must be enough traction to burn. In chimneys where sufficient traction is not ensured, the boiler must never be operated. Any installation in the place where the boiler is installed should not be installed.

In case of boiler changing in the boiler room, the old boiler must be removed or disconnected from

- 1 spark preventive
- 2 sealant
- 3 concrete chimney cover
- 4 continuation under cover
- 5 Brick or CMU filler
- 6 die
- 7 cemented support unit
- 8 insulation for bond breakage
- 9 cylindrical flue pipe

the chimney and the insulation must be sealed and insulation should be made. In no case should more than one boiler be connected to the same chimney. The cylindrical chimney can be passed through the chimney in the figure.

Smoke chimneys should not be placed on the outer wall of the building unless it is a technical requirement. The wall thickness of the chimney walls should not be less than a brick thickness. For chimney construction, hollow bricks and briquettes should never be used. It should be plastered inside and outside of the rectangular chimney.

It should be ensured that fresh air is continuously introduced into the area where the boiler is installed. Reference must be made to the dimensions specified in this manual. The boiler should never be installed in living spaces or in a place directly connected to such a place. In order to reduce the risk of scaling and corrosion in old and new installations, the instructions given in the relevant section of this manual should be applied by the installer who installs the boiler. In particular, if the

boiler is connected to an old installation, it is necessary to clean the waste completely before installation. The installation must be cleaned and cleaned several times.

Avoid overloading fuel into the boiler and check the suitability of the supply - standby settings given in the operating instructions. These settings, which indicate the working and stopping time of the gear unit, are the chimney characteristics of the boiler (traction difference, etc.), ambient conditions, thermal comfort need of the space, insulation of the space etc. It depends on many parameters. The settings given in the catalog are required when the boiler is required to operate at a lower power than it is given to operate at maximum power; combustion must be observed. Adjusting the settings to prevent the burning of the unburned coal down the ladle will be appropriate for both the boiler efficiency and the economy.

Burning and floating fuel particles in the boiler, fuel ashes out of the open door can easily open to the outside environment, the fan must not be opened while the fan is working. When the boiler is burned, the covers must not be opened or manually loaded onto the hob or into the boiler.

The electrical connection must never be cut off while the boiler is operating.

For any reason, direct cold water should not be added to the overheated boiler for cooling. This can cause noise in the installation, excessive thermal stresses in the boiler and thus permanent damage. The water in the installation must not be drained unless there is a risk of maintenance or freezing. The system design should ensure that the ratio between the water flow rate and the boiler capacity is not exceeded and the difference between the boiler inlet and outlet water temperatures of 20°C is not exceeded. In order to minimize the water missing in the installation, the water level should be checked regularly and the leaks in the system should be removed. Because excessive water additions to the system will cause lime accumulation on the water side of the boiler and this will cause regional overheating and this will damage the boiler.

The boiler must not be burned directly, it must be installed on a level surface. It is recommended that the height of the base on which the boiler is to be installed shall be at least 10 cm and its width is wider than the outside dimensions of the boiler. Thanks to the base, the boiler is protected from the water that can accumulate on the ground and the fan will be prevented from absorbing dust from the ground.

Fuel must be added before emptying the hopper.

The hopper screen should not be removed while the fuel is being loaded.

ELECTRICAL INSTALLATION INSTRUCTIONS

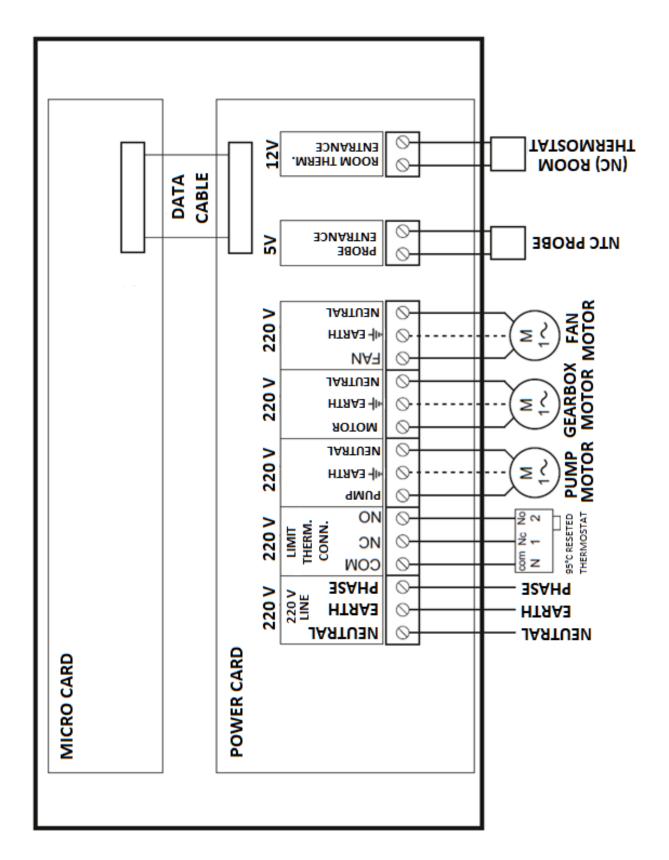
ÜNMAK boilers are supplied with 230 Volt mains voltage. The regulator should be used where the mains voltage is less than or equal to ten percent.

The control panel must be connected to a wall panel with suitable grounding equipment, the distance between the boiler board and this wall panel must not exceed 50 cm. All electrical connections must be carried out by authorized personnel in accordance with local regulations.

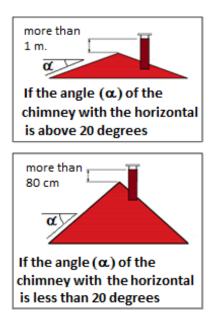
Separate grounding installation must be done for each boiler room. Earthing installation:

- a) 0.5 m2, 2 mm. Thick copper plate,
- b) 0.5 m2, 3 mm. thick galvanized plate (hot dip) or
- c) Pure copper rod should be made with electrodes.

The copper rod electrodes must be at least 1.5 m in length or \emptyset 20 mm in diameter and at least 1.25 m in length and the grounding resistance of the rod electrodes should be below the limits of 20 Q. (Neutral-Earth voltage Toprak3V)


In all three cases, copper electrodes or plates must be connected to the natural gas installation by soldering or welding using at least 16 mm2 multi-stranded copper wire and conductive shoe. Copper electrodes or plates should be placed in the ground as a whole, and the conductor remaining on the ground must be connected to the boiler room main table with the pipe housing.

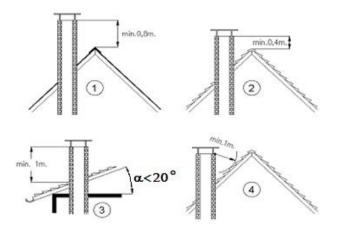
THIS PRODUCT MUST BE CONNECTED TO A SAFE EARTH LINE!



The boiler must be closed and should not be installed in living spaces.

Control panel electrical connection diagram

INFORMATION ABOUT COMBUSTION

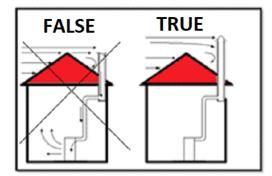


In order to ensure correct combustion, as a general rule, the air supplied to the fuel must be at a certain rate. So the fan speed should be adjusted well. The air required for a certain amount of fuel should not be too much. If the amount of air which is changed depending on the type of fuel is less than the required amount of carbon monoxide, the energy produced is reduced, the combustion starts, the combustion efficiency decreases, the air quantity is decreasing, the carbon monoxide decreases while the non-combustion air is heated from the chimney by heating in the furnace, the combustion is deteriorated and the combustion efficiency It decreases.

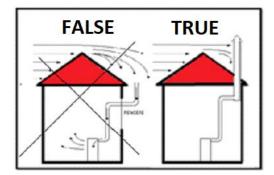
If the temperature of the flue gas is above the accepted values, excess energy will be ejected from the flue to the atmosphere. The material, the way of construction and the connection of the chimneys are important in terms of high combustion efficiency, low heating cost and protection of the environment.

The chimney must be good for burning to be good. It is recommended to use a high temperature resistant firebrick and stainless steel chimneys. The horizontal smoke ducts should be connected to the chimney with a slope of at least 5% and the length should never exceed 1/4 of the height of the chimney. The height of the chimney should be well determined. The chimney sections must be circular unless necessary.

Never use a hollow brick on the chimney walls. The most ideal is the creation of fire bricks.


ÜNMAK boilers must be connected to an independent chimney that can provide the minimum desired minimum traction. Minimum traction is usually min. It should be measured with a manometer in 20 Pa. The part of the waste gas line between the boiler and the chimney should be insulated with glass wool. The waste gas pipe and flue pipe shall be made of steel sheet or material which is resistant to 400 °C. All connections on the exhaust gas pipe must be sealed to obtain better combustion and efficiency. The exhaust gas pipe must be connected to the chimney in the shortest way within the dimensions given in the diagram below. Horizontal connections and equipment such as elbows should be avoided.

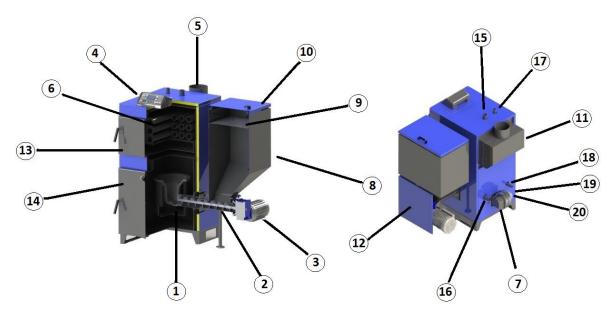
A vertical steel pipe should not be used as a chimney; the chimney must have an inside and an outer surface. The outer surface may be steel or brick braided. For the inner surface of the chimney, corrosion-resistant stainless steel may be preferred. In order to prevent condensation, thermal insulation should be applied to the space between the inner and outer surfaces of the chimney.


At the lowest level of the chimney, there must be a cleaning lid made of steel that is sealed.

The length of the exhaust gas pipe between the chimney and the boiler must not exceed a quarter of the height of the chimney.

The size of the waste gas pipe and the chimney should be greater than the size of the waste gas outlet (fumes) of the boiler. The boiler chimney installed must be at least 1 meter above the roof of the space and at least 0.4 meter above the tiled roofs.

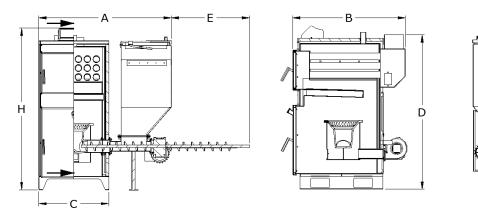
Chimney without flue hat and with flue hat

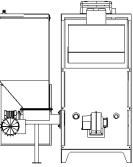

Incorrect installation chimney and correctly installed chimney hat

Excess air at high flue temperature, high flue temperature also causes loss of combustion efficiency.

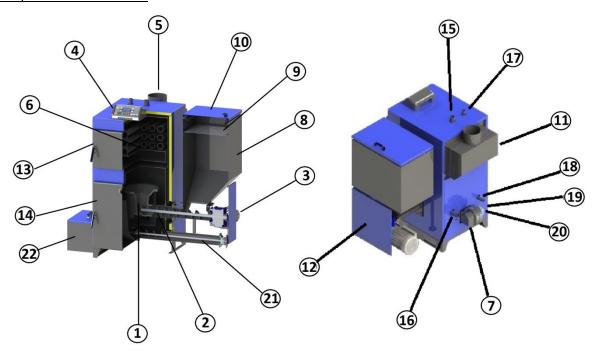
BOILER FEATURES

ÜKY/Y Boiler Features



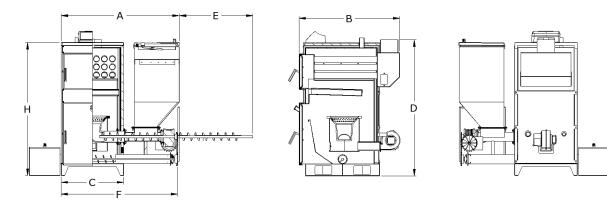

1. Fire pot	6. Flue pipes	11. Chimney hood	16. Return from radiators
2. Auger	7. Fan clack	12. Motor protection	17. Safety outlet
3. Gear box	8. Hopper	13. Upper cover	18. Safety inlet
4. Control box	9. Hopper sieve	14. Lower cover	19. Fill/discharge
5. Flue	10. Hopper cover	15. Outlet to radiators	20. Fan

- 1. Fire pot: Consists of two nested containers. The fuel is driven by the spiral from the incoming chamber, blowing the fan out. The fan air and fuel meet above the ladle.
- 2. Auger: It is a spiral twist, which is the shaft in the middle of the hopper that supplies the fuel into the hearth. The fuel supply standby settings are settings for the helix operation.
- 3. Gear box: Used with motor. It is used to increase the power by decreasing the speed of the engine. Geared motor gives the movement of the auger.
- 4. Control box: It is the electronic box that activates the boiler. It controls when the gear unit, the motor, the pump will stop and when. The temperature values that you read while the controller is active.
- 5. Flue: It is the boiler section that throws out the toxic gases inside the boiler with the chimney mechanism to be connected. The biggest factor in the good burning of the boiler
- 6. Flue pipes: It is the way the burning inside the boiler is sent to the chimney. Fumes from the flame reach the chimney through the pipes.
- 7. Fan clack: When the fan is stopped when there is no burning, it is the mechanism used to prevent air from entering. The metal cover inside the flap prevents the air intake from falling automatically when the fan air does not pull.
- 8. Hopper: This is where the fuel is stored. The capacity to be taken according to the fuel size varies.

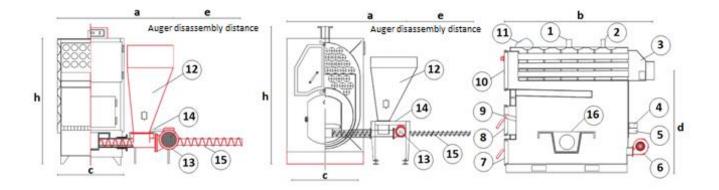

- 9. Hopper sieve: During the fuel loading from the hopper; Removal of the sieve must be avoided as the large fuel parts fall into the hopper on fuel loading and these parts can come together and prevent the fuel from passing through the throat over the helix.
- 10. Hopper cover: If the hopper cover remains open during combustion, there may be a problem in boilers that do not suffice. Combustion wastes that cannot go out of the chimney can pass through the shortest path through the feeding auger and leave the hopper. Even if we call it smoking, it can have dangerous consequences until the fire in the future.
- 11. Chimney hood: The smoke from the smoke pipes is the place where the smoke comes from the chimney. The smoke that was left in the smoke was deposited here and the more volatile combustion wastes left the boiler. These settling institutions should be cleaned at certain time intervals and should not obstruct the chimney traction.
- 12.Motor protection: It is the plate made from motor and gearbox for the protection of people or pets.
- 13.Upper Cover: Smoke pipe cleaning door: The ashes in the pipes of the smoke cause the pipe to be narrowed and the boiler draw decreases, thus decreasing the boiler efficiency. To prevent this, open the top cover and clean with a circular wire brush provided with the boiler. It must be tightly closed during combustion.
- 14.Lower cover: Opened lid for cleaning ashes from the pot. It must be tightly closed during combustion.
- 15.Outlet to radiators: It is a conduit for radiators or heating installation. The water heated in the boiler is sent from this pipe to radiators or heating installations.
- 16.Return from radiators: It is the pipe from which the water returned from the radiators or the heating system is returned to the boiler. It can also be called return pipe or return line.
- 17.Safety outlet: It is also an expansion line. It is the line where the water that is expanded due to heating in the boiler is sent as security.
- 18.Safety return: It is the line in which the water sent back to the expansion tank is taken back to the boiler.
- 19.Fill/Discharge: This is the line used for the first installation of water from this line to the boiler. If the water in the boiler needs to be drained for maintenance, it can be discharged from this line. If the water decreases over time, water can be printed from this line when the boiler is cold.
- 20.Fan: It is a fan that provides combustion air. The control panel can be set to operate at the desired speed.

ÜKY/Y Technical Features

M	odel: ÜKY/Y		25	34	45	60	80	100	
Ту	pe of Fuel		Coal-Olive Pomace-Fruit Seeds etc.						
		kW	29	40	52	70	93	116	
PC	Power		25.000	34.000	45.000	60.000	80.000	100.000	
Bu	Irning Pot Diameter	mm	33	30		400		470	
Hopper Capacity kg 200					00				
W	ater Volume	Lt	75	85	107	138	206	249	
Bo	oiler Weight	kg	300	325	390	425	510	590	
D	aught	Ра	25-28	28-31	31-33	33-35	35	-40	
Te	emperature Control Range	°C			40	-90			
Re	eturn Temp. (recommended)	°C	°C 40						
M	ax. Operating Pressure		3						
Te	est Pressure	bar	5						
	Boiler Total Width (a)	mm	1100	1180			1250	1380	
su	Depth (b)	mm	930	840	990	1100	1370	1460	
Jsio	Body Width (c)	mm	535		62	25		740	
Dimensions	Flue Connection Height (d)	mm	1230	1320	13	60	1150	1220	
Di	Auger Disass. Distance (e)	mm	820		850		920	1000	
	Boiler Total Height (h)	mm	1270	1350		1420		1480	
Fl	ue Connection Diameter	mm	13	30	18	30	2	20	
M	in. – Max. Flue Temperature	°C			170 [.]	-210			
Bo	oiler Inlet-Outlet	R″	1"	1	1/4"	1 1⁄2"	2		
Sa	fety Inlet-Outlet	1" 1½"							
Fi	ling – Discharging	R" 1/2"							
El	ectricity Connection	V/Hz			230V	- 50Hz			


1. Fire pot	7. Fan clack	13. Upper cover	19. Fill/discharge
2. Auger	8. Hopper	14. Lower cover	20. Fan
3. Gear box	9. Hopper sieve	15. Outlet to radiators	21. Ash cleaning auger
4. Control box	10. Hopper cover	16. Return from radiators	22. Ash container
5. Flue	11. Chimney hood	17. Safety outlet	
6. Flue pipes	12. Motor protection	18. Safety inlet	

- 1. Fire pot: Consists of two nested containers. The fuel is driven by the spiral from the incoming chamber, blowing the fan out. The fan air and fuel meet above the ladle.
- 2. Auger: It is a spiral twist, which is the shaft in the middle of the hopper that supplies the fuel into the hearth. The fuel supply standby settings are settings for the helix operation.
- 3. Gear box: Used with motor. It is used to increase the power by decreasing the speed of the engine. Geared motor gives the movement of the auger.
- 4. Control box: It is the electronic box that activates the boiler. It controls when the gear unit, the motor, the pump will stop and when. The temperature values that you read while the controller is active.
- 5. Flue: It is the boiler section that throws out the toxic gases inside the boiler with the chimney mechanism to be connected. The biggest factor in the good burning of the boiler
- 6. Flue pipes: It is the way the burning inside the boiler is sent to the chimney. Fumes from the flame reach the chimney through the pipes.
- 7. Fan clack: When the fan is stopped when there is no burning, it is the mechanism used to prevent air from entering. The metal cover inside the flap prevents the air intake from falling automatically when the fan air does not pull.
- 8. Hopper: This is where the fuel is stored. The capacity to be taken according to the fuel size varies.


ÜKY/Y-KB Boiler Features

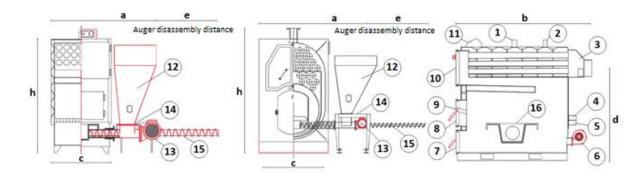
- 9. Hopper sieve: During the fuel loading from the hopper; Removal of the sieve must be avoided as the large fuel parts fall into the hopper on fuel loading and these parts can come together and prevent the fuel from passing through the throat over the helix.
- 10. Hopper cover: If the hopper cover remains open during combustion, there may be a problem in boilers that do not suffice. Combustion wastes that cannot go out of the chimney can pass through the shortest path through the feeding auger and leave the hopper. Even if we call it smoking, it can have dangerous consequences until the fire in the future.
- 11. Chimney hood: The smoke from the smoke pipes is the place where the smoke comes from the chimney. The smoke that was left in the smoke was deposited here and the more volatile combustion wastes left the boiler. These settling institutions should be cleaned at certain time intervals and should not obstruct the chimney traction.
- 12. Motor protection: It is the plate made from motor and gearbox for the protection of people or pets.
- 13. Upper Cover: Smoke pipe cleaning door: The ashes in the pipes of the smoke cause the pipe to be narrowed and the boiler draw decreases, thus decreasing the boiler efficiency. To prevent this, open the top cover and clean with a circular wire brush provided with the boiler. It must be tightly closed during combustion.
- 14. Lower cover: Opened lid for cleaning ashes from the pot. It must be tightly closed during combustion.
- 15. Outlet to radiators: It is a conduit for radiators or heating installation. The water heated in the boiler is sent from this pipe to radiators or heating installations.
- 16. Return from radiators: It is the pipe from which the water returned from the radiators or the heating system is returned to the boiler. It can also be called return pipe or return line.
- 17. Safety outlet: It is also an expansion line. It is the line where the water that is expanded due to heating in the boiler is sent as security.
- 18. Safety return: It is the line in which the water sent back to the expansion tank is taken back to the boiler.
- 19. Fill/Discharge: This is the line used for the first installation of water from this line to the boiler. If the water in the boiler needs to be drained for maintenance, it can be discharged from this line. If the water decreases over time, water can be printed from this line when the boiler is cold.
- 20. Fan: It is a fan that provides combustion air. The control panel can be set to operate at the desired speed.
- 21. Ash cleaning auger: Operates synchronously with the fuel feed coil. It operates at a slower rate than the fuel feed coil.
- 22. Ash container: It is a bucket where the ashes are deposited. After the cleaning of the ash, it must be fully seated when snapping again.

ÜKY/Y-KB Technical Features

N	odel: ÜKY/Y-KB		25	34	45	60	80	100	
Ту	vpe of Fuel		Coal-Olive Pomace-Fruit Seeds etc.						
		kW	29	40	52	70	93	116	
P	Power		25.000	34.000	45.000	60.000	80.000	100.000	
В	urning Pot Diameter	mm	33	30		400		470	
Н	opper Capacity	kg			20	00			
W	ater Volume	Lt	75	85	107	138	206	249	
B	piler Weight	kg	300	325	390	425	510	590	
D	raught	Ра	25-28	28-31	31-33	33-35	35	-40	
Τe	emperature Control Range	°C			40	-90			
Re	eturn Temp. (recommended)	°C	C 40						
N	Max. Operating Pressure bar 3								
Τe	est Pressure	bar	5						
	Boiler Total Width (a)	mm	1100		1180		1250	1380	
su	Depth (b)	mm	930	840	990	1100	1370	1460	
Jsio	Body Width (c)	mm	535		62	25		740	
Dimensions	Flue Connection Height (d)	mm	1230	1320	13	60	1150	1220	
Ō	Auger Disass. Distance (e)	mm	820		850		920	1000	
	Boiler Total Height (h)	mm	1270	1350		1420		1480	
Fl	ue Connection Diameter	mm	13	30	18	30	2	20	
N	in. – Max. Flue Temperature	°C			170	-210			
B	piler Inlet-Outlet	R″	1"	1	1/" 4	1 1⁄2"	2		
Sa	ifety Inlet-Outlet	R″	1" 1½"						
Fi	lling – Discharging	R″			1/	/ II 2			
El	ectricity Connection	V/Hz			230V	- 50Hz			

- 1- Outlet to radiators
- 2- Safety outlet
- 3- Flue
- 4- Return from radiators
- 10- Flue pipes cleaning cover

7- Ash discharge cover


8- Manually fuel feeding cover

9- Flame inspection window

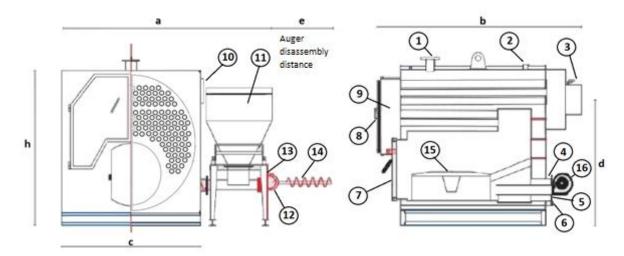
- 5- Safety inlet
- 6- Fan and clack
- 11- Control box
- 12- Hopper

- 13- Gearbox 14- Hopper table 15- Auger
- 16- Fire pot

Mo	odel: ÜKYP/Y		130	160	180	200	250	
Тур	be of Fuel			Coal-Olive F	omace- Fruit	Seeds etc.		
Dev		kW	151	186	209	233	291	
PO	wer	kcal/h	130.000 160.000 180.000 200.000					
Bu	rning Pot Dimensions	mm			430x410			
Fue	el capacity – Coal	kg			220			
	– Olive pomace	kg			185			
Wa	iter volume	kg	320	400	480	560	640	
Во	iler weight	kg	805	920	1080	1155	1300	
Dra	aught	Ра	42 – 45	44 –	47	45 -	- 49	
Tei	mperature Control Range	°C			40 - 80			
Re	turn Temp. (recommended)	°C	40					
Ma	ix. Operating Pressure	bar			3			
Tes	st Pressure	bar			5			
	Boiler Total Width (a)	mm	14	460	15	60	1660	
ns	Depth (b)	mm	1615	181	.5	19	15	
oisr	Body Width (c)	mm	7	60	86	50	960	
Dimensions	Flue Connection Height (d)	mm	1615	181	.5	19	15	
Ō	Auger Disass. Distance (e)	mm			1100			
	Boiler Total Height (h)	mm			1640			
Flu	e Connection Diameter	mm			220			
Mi	n. – Max. Flue Temperature	°C			170 – 210			
Во	iler Inlet-Outlet	R″	R" 2" 2 <i>1</i>					
Saf	ety Inlet-Outlet	R″	R" 1½"					
Fill	ing – Discharging	R″			1/2"			
Ele	ctricity Connection	V/Hz			230V – 50Hz			

- 1- Outlet to radiators
- 2- Safety outlet
- 3- Flue
- 4- Return from radiators
- 5- Safety inlet
- 6- Fan and clack

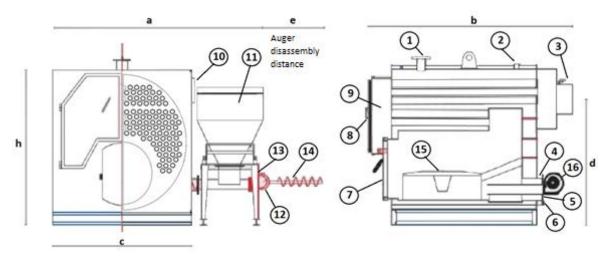
7- Ash discharge cover


11- Control box

12- Hopper

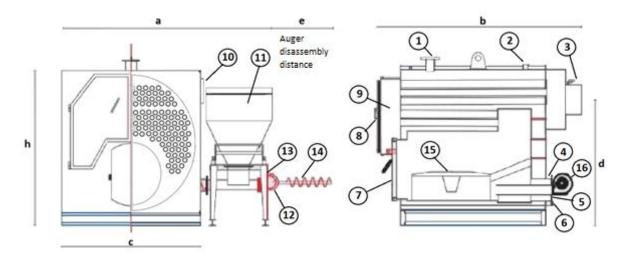
- 8- Manually fuel feeding cover
- 9- Flame inspection window
- 10- Flue pipes cleaning cover

- 13- Gearbox
- 14- Hopper table
- 15- Auger
- 16- Fire pot


M	odel: ÜKYP/Y		300	350	400	450	500	600
Ту	pe of Fuel			Coal-	Olive Pomac	e-Fruit Seed	ls etc.	
Da		kW	349	407	465	523	582	698
PO	wer	kcal/h	300.000	350.000	400.000	450.000	500.000	600.000
Bu	rning Pot Dimensions	mm	430	x410		600	x600	
Fu	el capacity – Coal	kg			300			350
	– Olive pomace	kg			255			297
W	ater volume	kg	890	925	1195	1240	1505	1570
Во	iler weight	kg	1755	1900	2130	2200	2505	2750
Dr	aught	Ра		47	-51		50	-53
Те	mperature Control Range	°C		40 - 80				
Re	turn Temp. (recommended)	°C	40					
M	ax. Operating Pressure	bar			:	3		
Те	st Pressure	bar			!	5		
	Boiler Total Width (a)	mm	1940	1990		22	.00	
ns	Depth (b)	mm	2280		2400		27	50
Dimensions	Body Width (c)	mm	1130	1180		13	90	
mer	Flue Connection Height (d)	mm	1465	1600		1665		1675
Ō	Auger Disass. Distance (e)	mm	12	00		13	00	
	Boiler Total Height (h)	mm	2000	2065		2095		2125
Flu	e Connection Diameter	mm			300			350
Μ	n. – Max. Flue Temperature	°C			170 -	- 210		
Во	iler Inlet-Outlet	R″	DN	180		DN100		DN125
Sa	fety Inlet-Outlet	R″	R" 1½" 2"					
Fil	ling – Discharging	R″	3/4"					
Ele	ectricity Connection	V/Hz			400V -	- 50 Hz		

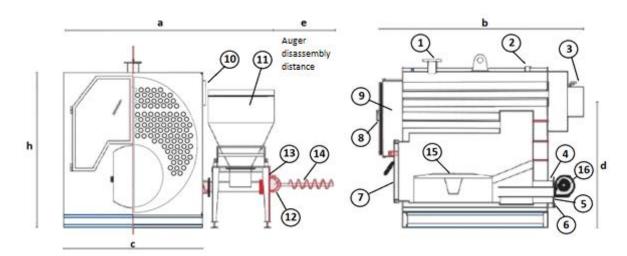
- 1- Outlet to radiators
- 2- Safety outlet
- 3- Flue
- 4- Return from radiators
- 5- Safety return
- 6- Filling-Discharging
- 7- Ash removal cover
- 8- Flame inspection hole
- 9- Flue pipes cleaning cover
- 10- Control box
- 11- Hopper
- 12- Gearbox

- 13- Hopper table
- 14- Auger
- 15- Burning pot
- 16- Fan


MOD	EL	ÜKYS/3G-Y		120	150	180	210	240	270	
Туре	of Fuel			Coal-Olive Pomace- Fruit Seeds etc.						
Davis			kW	140	174	209	244	279	314	
Powe	er		kcal/h	120.000	150.000	180.000	210.000	240.000	270.000	
Burn	ing pot din	nensions	mm			430'	*410			
Fuel	Fuel Capacity		kg		250		30	00	350	
Fuel	Сарасну	Olive pomace	kg		213		25	55	299	
Wate	er volume		lt	720	794	894	1146	1276	1213	
Boile	r Weight		kg	1420	1525	1760	1890	2075	2150	
Drau	ght		Ра		42-45		44	-47	46-49	
Temp	perature co	ontrol range	°C			40	- 80			
Retu	rn Temp. (r	ecommended)	°C			4	0			
Max.	Operating	Pressure	bar			2	1			
Test	Pressure		bar			(5			
	Boiler Tot	al Width (a)	mm	2100 2140 2220 2328 2410					410	
	Depth (b)		mm			22	20			
suo	Body Wid	th (c)	mm	1200	1240	1320	1428	1510	1510	
nsi	Flue Conr	nection Height (d)	mm	1145	112	20	1300	1315	1370	
Dimensions	Auger Dis	ass. Distance (e)	mm		1550			1600		
D	Boiler Tot	al Height (h)	mm	1570	1610	1690	1798	18	380	
Flue	Connectior	n Diameter	mm		250			300		
Min.	– Max. Flu	e Temperature	°C			170 ·	- 210			
Boile	r Inlet-Out	let	R''	DN	N 50	DN	65	DI	N 80	
Safet	y Inlet-Out	let	R''		1 1/	/4"		1 1	1/2"	
Filling	g – Dischar	ging	R''			3/	4"			
Elect	ricity Conn	ection	V/Hz			400 V	/ 50Hz			

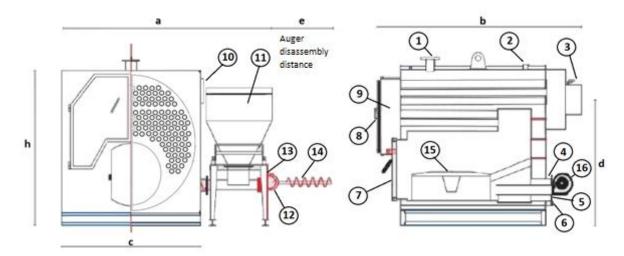
- 1- Outlet to radiators
- 7- Ash removal cover
- 2- Safety outlet
- 3- Flue
- 4- Return from radiators
- 5- Safety return
- 6- Filling-Discharging
- 8- Flame inspection hole
- 9- Flue pipes cleaning cover
- 10- Control box
- 11- Hopper
- 12- Gearbox

- 13- Hopper table
- 14- Auger
- 15- Burning pot
- 16- Fan


MOD	EL	ÜKYS/3G-Y		300	330	360	390	420	450	
Туре	of Fuel			Coal-Olive Pomace-Fruit Seeds etc.						
Dour			kW	349	384	419	454	488	523	
Powe	:r		kcal/h	300.000	330.000	360.000	390.000	420.000	450.000	
Burn	ing pot dim	ensions	mm		430	*410		640*	[•] 810	
Fuel	o no oitu	Coal	kg				350			
Fuel	Fuel capacity Olive pomace						299			
Wate	er volume		lt	1768	1814	1905	1987	2063	2433	
Boile	r weight		kg	2600	2765	2890	2980	3250	3400	
Drau	ght		Ра		46-49			48-52		
Temp	perature co	ntrol range	°C			4	0 - 80			
Retu	rn Temp. (r	ecommended)	°C	C 40						
Max.	Nax. Operating Pressure bar 4									
Test	Test Pressure			6						
	Boiler Tot	al Width (a)	mm	2480 2600 2650 2740					40	
	Depth (b)		mm				2690			
Dimensions	Body Wid	th (c)	mm	1580	1600	1650	1650	1700	1790	
insi	Flue Conn	ection Height (d)	mm	1415	1440	1475	1485	1480	1575	
ime	Auger Disa	ass. Distance (e)	mm		1600			1860		
Ō	Boiler Tot	al Height (h)	mm	1950	1970	20	020	2070	2160	
Flue	Connection	Diameter	mm	3	00		3	350		
Min-	Max Flue te	emperature	°C			17	0 - 210			
Boiler inlet-outlet R'' DN 80						DN 100				
Safet	y inlet-outl	et	R''		1 1/2"			2"		
Filling	g-Dischargi	ng	R''	R" 3/4"						
Elect	ricity conne	ection	V/Hz			400	V / 50Hz			

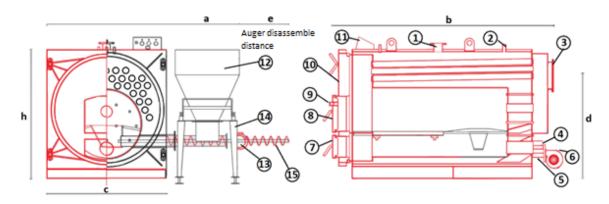
- 1- Outlet to radiators
- 2- Safety outlet
- 3- Flue
- 4- Return from radiators
- 5- Safety return
- 6- Filling-Discharging
- 7- Ash removal cover
- 8- Flame inspection hole
- 9- Flue pipes cleaning cover
- 10- Control box
- 11- Hopper
- 12- Gearbox

- 13- Hopper table
- 14- Auger
- 15- Burning pot
- 16- Fan


мо	DEL - SERİ	ÜKYS/3G-Y		480	510	540	600	660	720	
Тур	e of fuel				Coal-	Olive Pomac	e- Fruit Seed	s etc.		
Pow			kW	558	593	628	698	768	837	
POW	/er		kcal/h	480.000	510.000	540.000	600.000	660.000	720.000	
Bur	ning pot dim	ensions	mm	640*810			690*1000			
Euro	Fuel capacity Coal		kg		350			450		
rue	сарасну	Olive pomace	kg		299			383		
Wat	er volume		lt	2369	2628	2679	2585	2915	3093	
Boil	er weight		kg	3485	3735	3850	4010	4285	4500	
Dra	ught		Ра		51-54			53-57		
Tem	perature co	ntrol range	°C			40 -	- 80			
Retu	urn Temp. (r	ecommended)	°C			4	0			
Max	. operating	pressure	bar			2	1			
Test	pressure		bar	6						
	Boiler Tota	l Width (a)	mm	27	2740 2760		2810	2890	2950	
	Depth (b)		mm	2690	29	20	3020			
Dimensions	Body Width	n (c)	mm	1790	1790	1810	1810	1890	1950	
nsi	Flue Conne	ction Height (d)	mm	1615	1640	15	70	1655	1645	
me	Auger Disas	ssemb. Distance (e)	mm		1860			1900		
D	Boiler Tota	l Height (h)	mm	22	160	21	80	2260	2320	
Flue	Connection	Diameter	mm		3	350		40	0	
Min	. – Max. Flue	e Temperature	°C			170 -	- 210			
Boil	er Inlet-Outl	et	R''	DN 100 DN 125						
Safe	ety Inlet-Out	let	R''	2"						
Filli	ng – Dischar	ging	R''			3/	4"			
Elec	tricity Conn	ection	V/Hz			400 V	/ 50Hz			

- 1- Outlet to radiators
- 2- Safety outlet
- 3- Flue
- 4- Return from radiators
- 7- Ash removal cover
- 8- Flame inspection hole 9- Flue pipes cleaning cover
- 10- Control box
- 5- Safety return 6- Filling-Discharging
- 11- Hopper 12- Gearbox

- 13- Hopper table
- 14- Auger
- 15- Burning pot
- 16- Fan

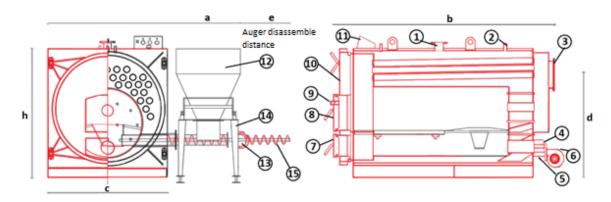

MODEL	MODEL ÜKYS/3G-Y 780 840 900 1000 1100				840	900	1000	1100	1200	
Type of Fuel					Coal	-Olive Poma	ce-Fruit Seed	ds etc.		
Power			kW	907	977	1047	1163	1279	1396	
Power			kcal/h	780.000 840.000 900.000 1.000.000 1.100.000 1.200.000					1.200.000	
Burning pot	dimensio	ons	mm		690*1000			740*1000		
Fuel capacity	Fuel capacity Coal		kg	450						
Fuercapacity	Olive pomace					3	83			
Water volum	ne		lt	3248	3448	3354	4396	4479	4610	
Boiler weigh	t		kg	4640	4890	5170	5750	6040	6400	
Draught			Ра			56	5-59			
Temperature	e control	range	°C	40 - 80						
Return temp	perature	(recommended)	°C	C 40						
Max. operat	ing press	sure	bar				4			
Test pressur	e		bar	6						
	Boiler T	otal Width (a)	mm	2950 3000 3050 310				00		
	Depth (b)	mm		3020			3540		
Dimensions	Body W	'idth (c)	mm	1950	2000	2050	2050	2100	2150	
Dimensions	Flue Co	nnection Height (d)	mm	1700	1750	17	'60	1815	1860	
	Auger D	Disass. Distance (e)	mm	1900			1950			
	Boiler T	otal Height (h)	mm	2320	2370	24	20	2470	2520	
Flue Connec	tion Diar	neter	mm			4	00			
Min. – Max.	Flue Tem	nperature	°C 170 - 210							
Boiler Inlet-0	Outlet		R''		DN 125			DN 150		
Safety Inlet-	Outlet		R''	R" 2" 2 1/2"						
Filling – Disc	harging		R''	R'' 3/4"						
Electricity Co	onnectio	n	V/Hz			400 V	/ 50Hz			

- 1- Outlet to radiators
- 2- Safety outlet
- 3- Flue
- 7- Ash removal cover
- 8- Flame inspection hole 9- Flue pipes cleaning cover
- 4- Return from radiators
- 10- Control box
- 5- Safety return
- 6- Filling-Discharging
- 11- Hopper 12- Gearbox

- 13- Hopper table
- 14- Auger
- 15- Burning pot
- 16- Fan

MODEL		ÜKYS/3G-Y		1300	1500	2000		
Type of Fuel				Coal-Ol	ive Pomace-Fruit Se	eds etc.		
Devuer			kW	1512	1745	2326		
Power			kcal/h	1.300.000	1.500.000	2.000.000		
Burning pot	dimensi	ons	mm	550*1050	640*1250	550*1050		
Fuel capacity		kg		450				
Fuel capacity	/	Olive pomace	kg		383			
Water volum	ne		lt	4490	5370	7400		
Boiler weigh	t		kg	6800	7850	11700		
Draught			Ра	0,58-0,61				
Temperature	e contro	l range	°C		40 - 80			
Return temp	Return temperature (recommended)		°C	C 35				
Max. operat	ing pres	sure	bar	4				
Test pressur	e		bar	6				
	Boiler	Total Width (a)	mm	2150	2300	2400		
	Depth	(b)	mm	5020	4800	6100		
Dimensions	Body V	Vidth (c)	mm	2150	2300	2400		
Dimensions	Flue Co	onnection Height (d)	mm	1860	1920	1960		
	Auger	Disass. Distance (e)	mm	2800	3700	3000		
	Boiler	Total Height (h)	mm	2520	2600	2750		
Flue Connec	tion Dia	meter	mm	450	500	800		
Min. – Max.	Flue Te	mperature	°C		170 - 210			
Boiler Inlet-0	Boiler Inlet-Outlet			DN	DN 200			
Safety Inlet-Outlet			R''	2 1/2" 3" - 2 1/2				
Filling – Discharging				3/4"				
Electricity Co	onnectio	on	V/Hz		400 V / 50 Hz			

- 1- Outlet to radiators
- 2- Safety outlet


5- Safety return

- 3- Flue
- 4- Return
- 7- Ash removal cover

6- Fan

- 8- Manual fuel feeding cover
- 9- Flame inspection hole
- 10- Flue pipes cleaning cover
- 11- Control box
- 12- Hopper
- 13- Gear box
- 14- Hopper table
- 15- Auger

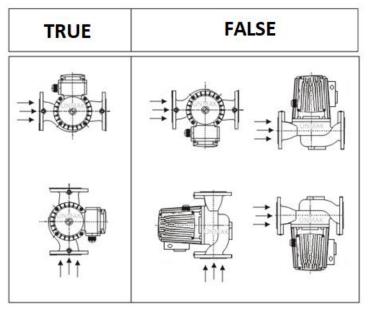
мо	DEL	ÜKYS/Y		200	225	250	300	350	400			
Тур	e of Fuel				Coal-C	Olive Pomace	e-Fruit Seeds	etc.				
Davi			kW	233	262	291	349	407	465			
Pow	/er		kcal/h	200.000	225.000	250.000	300.000	350.000	400.000			
Bur	ning pot dime	ensions	mm			430*410			770*680			
Euro	capacity	Coal	kg		300			350				
rue	capacity	Olive pomace	kg		255			298				
Wat	er volume		lt	900	1000	1050	1260	1440	1880			
Boil	er weight		kg	2000	2200	2310	2590	2900	3170			
Dra	ught		Ра	44	-47		46-4	49				
Tem	perature con	trol range	°C			40-8	80					
Reti	urn temperat	ure (recommended)	°C			4()					
Max	. operating p	ressure	bar			4						
Test	pressure		bar			6						
	Boiler Total	Width (a)	mm	2050	2150	22	00	230	00			
	Depth (b)		mm		2210		26	50 3025				
Dimensions	Body Width	(c)	mm	1250	1350	14	00	150	00			
nsi	Flue Connec	tion Height (d)	mm	1015	1115	11	65	126	55			
me	Auger Disas	s. Distance (e)	mm	1350	1450	15	00	160	00			
Ö	Boiler Total	Height (h)	mm	1530	1630	16	80	178	30			
Flue	connection of	diameter	mm		30	00		35	0			
Min	. – Max. Flue	Temperature	°C			170 -	210					
Boil	er Inlet-Outle	et	R''	DN 65			DN 80					
Safe	ty Inlet-Outle	et	R''	11	/4"		1 1/2"		2"			
Filli	ng – Discharg	ing	R''			3/4	t"					
Elec	tricity Conne	ction	V/Hz			400 V -	50 Hz					

- 1- Outlet to radiators
- 2- Safety outlet

5- Safety return

- 3- Flue
- 4- Return
- 6- Fan
 - 7- Ash removal cover
 - 8- Manual fuel feeding cover
 - 9- Flame inspection hole
 - 10- Flue pipes cleaning cover
- 11- Control box
- 12- Hopper
- 13- Gear box
- 14- Hopper table
- 15- Auger

MOD	EL	ÜKYS/Y		450	500	600	700	800	
Туре	of fuel				Coal-Olive	Pomace- Frui	t Seeds etc.		
Davua	~		kW	523	582	698	814	930	
Powe	ſ		kcal/h	450.000	500.000	600.000	700.000	800.000	
Burni	ng pot dim	ensions	mm	820*710	820*780	850*880	950*900	1000*960	
Fuel a	o no city	Coal	kg	3	50		450		
Fuerc	apacity	Olive pompace	kg	2	.98		383		
Wate	r volume		lt	1990	2050	2560	3090	3300	
Boiler	weight		kg	3650	3820	4525	5300	5820	
Draug	ght		Ра		48-52		51-	·54	
Temp	erature co	ontrol range	°C		40-80				
Retur	n tempera	ture (recommended)	°C			40			
Max.	operating	pressure	bar			4			
Test p	oressure		bar			6			
	Boiler To	tal Width (a)	mm	23	350	2700	2730		
	Depth (b)	mm	3090	40-80 40 4 4 2350 2500	3400	35	50	
Dimensions	Body Wie	dth (c)	mm	1!	550	1700	1900	1930	
nsi	Flue Con	nection Height (d)	mm	13	315	1465	1665	1695	
ime	Auger Di	sass. Distance (e)	mm	10	650	1800	2000	2030	
D	Boiler To	tal Height (h)	mm	18	830	1980	2180	2210	
Flue c	onnection	diameter	mm	3	50		4(00	
Min	– Max. Flue	e Temperature	°C			170 - 210			
Boiler	Inlet-Out	et	R''	DN	100		DN 125		
Safety Inlet-Outlet			R''	2" 2 1/2					
Filling	– Dischar	ging	R''			3/4"			
Electr	icity Conn	ection	V/Hz			400 V - 50 Hz			


RULES FOR HEATING INSTALLATION

Circulation pump:

A pump with sufficient capacity is recommended. The capacity of the required pump is determined

by taking into account the resistance in the installation. Refer to the wiring diagrams in the manual to determine the correct position of the pump in the system. The pump stage must be adjusted according to the resistances in the installation.

In addition to the schematic installation connection shown in high-capacity boiler installations, a backup pump system must be installed. The by-pass line must be connected directly to the spare pump line as a primary pump. Boiler inlet and outlet lines must be

connected with collectors. For open expansion installations, the head of the pump must be less than the height of the expansion, so that the system does not make air.

When the circulation pump is installed, the failure of the electrical connections to come down will eliminate the problem of entering the water into the pump. Perpendicular installation of the shaft should also be avoided in order to prevent the pump shaft from pressing the housing or the outer cover during operation.

Expansion tank:

In hot water heating systems, when the water is heated from 10°C to 90°C, its volume increases by 3.55% in its first volume. Expansion tanks are used in order to obtain this expansion due to the temperature in the water. Expansion tanks also fulfill the safety of the system, that is, the pressure does not rise, and the necessary water support functions for the system. Expansion tanks are divided into two parts:

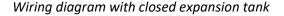
Systems with closed expansion tanks:

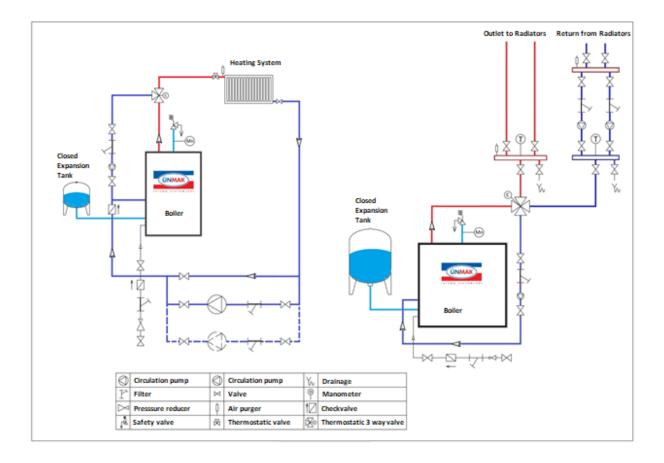
Closed expansion tanks are manufactured with air and nitrogen pressure before they are installed in the system. Pressure in the expansion tank is the pressure of the system. When the expansion tank heating circuit is active, the water volume which is expanded with the heating of the water is collected into the expansion tank. Then, when the heat falls, this water returns to the installation and balances the pressure of the installation. Compared to open systems; Since there is no piping operation to the top point of the radiator, no crushing process will be done, there will not be any heat loss due to the fact that there is not any open door to the external environment, there will not be a part of the system which is exposed to corrosion and since the system is closed, there will be no water loss due to evaporation. In closed expansion tanks, the water inside the system can be observed with manometer. Manometer is pressure gauge. The water in the boiler should show 1-1.5 bar pressure when it is cold. Pressure will increase as the boiler water heats up.

Boilers to be fitted with closed expansion tank must be installed with appropriate safety valve and automatic air vent.

For heating systems with closed expansion tank, safety valve must be used. The following table shows the safety valve capacities that must be in ÜNMAK solid fuel, automatic loading boilers. It is advisable to equip the system with double and appropriate safety valve against the risks of calcification.

At least closed expansion tank volumes and safety valve connection diameters are given according to boiler capacities. According to the boiler capacities and the number of floors applied, the expansion tank volumes vary.


The number of floors given in the table has been accepted in the basement of the boiler and the expansion tank.


Safety valve and closed expansion tank volumes which should be according to the rated boiler capacity

BOILER POWER (Mcal/h)	SAFETY VALVE CONNECTION DIAMETER (inch)	NUMBER of FLOOR											
		1	2	3	4	5	6	7	8	9	10	11	12
25 (3 bar)	1/2"	18											
34 (3 bar)	1/2"	25	25	35									
45 (3 bar)	1/2"	35	35	50	50	50							
60 (3 bar)	3/4"	50	50	50	80	80	100						
80 (3 bar)	3/4"	50	80	80	80	100	150	200					
100 (3 bar)	1"	80	80	80	100	150	150	200	300				

BOILER POWER (Mcal/h)	SAFETY VALVE CONNECTION DIAMETER (inch)						КАТ	SAYISI					
		1	2	3	4	5	6	7	8	9	10	11	12
120 (4 bar)	3/4"	80	80	80	100	100	150	150	150	200	300	500	750
130 (3 bar)	1"	80	100	100	150	150	200	300	500	1000			
150 (4 bar)	1"	80	100	100	150	150	150	200	200	300	300	500	1000
160 (3 bar)	1"	100	150	150	150	200	300	300	500	1500			
180 (3 bar)	1 1/4"	150	150	150	200	200	300	500	750	1500			
180 (4 bar)	1"	100	150	150	150	150	200	200	300	300	500	750	1000
200 (3 bar)	1 1/4"	150	150	200	200	300	300	500	750	1500			
200 (4 bar)	1"	150	150	150	150	200	200	200	300	500	500	750	1000
210 (4 bar)	1"	150	150	150	150	200	200	300	300	500	500	750	1500
225 (4 bar)	1"	150	150	150	200	200	200	300	300	500	500	750	1500
240 (4 bar)	1"	150	150	200	200	200	300	300	300	500	500	750	1500
250 (3 bar)	1 1/4"	150	200	200	300	300	500	500	1000	2000			
250 (4 bar)	1"	150	150	200	200	200	300	300	500	500	750	750	1500
270 (4 bar)	1 1/4"	150	200	200	200	300	300	300	500	500	750	1000	1500
300 (4 bar)	1 1/4"	200	200	200	300	300	300	500	500	500	750	1000	2000
330 (4 bar)	1 1/4"	200	200	300	300	300	300	500	500	750	750	1000	2000
350 (4 bar)	1 1/4"	200	300	300	300	300	500	500	500	750	750	1000	2000
360 (4 bar)	1 1/4"	200	300	300	300	300	500	500	500	750	750	1500	2000
390 (4 bar)	1 1/4"	300	300	300	300	500	500	500	500	750	1000	1500	2000
400 (4 bar)	1 1/4"	300	300	300	300	500	500	500	500	750	1000	1500	3000
420 (4 bar)	1 1/4"	300	300	300	300	500	500	500	750	750	1000	1500	3000
450 (4 bar)	1 1/2"	300	300	300	500	500	500	500	750	750	1000	1500	3000
480 (4 bar)	1 1/2"	300	300	500	500	500	500	750	750	750	1000	1500	3000
500 (4 bar)	1 1/2"	300	300	500	500	500	500	750	750	1000	1000	1500	3000
510 (4 bar)	1 1/2"	300	300	500	500	500	500	750	750	1000	1000	1500	3000
540 (4 bar)	1 1/2"	300	500	500	500	500	500	750	750	1000	1500	2000	3000
600 (4 bar)	1 1/2"	500	500	500	500	500	750	750	1000	1000	1500	2000	4000
660 (4 bar)	1 1/2"	500	500	500	500	750	750	750	1000	1000	1500	2000	4000
700 (4 bar)	1 1/2"	500	500	500	500	750	750	750	1000	1500	1500	2000	4000
720 (4 bar)	1 1/2"	500	500	500	750	750	750	1000	1000	1500	1500	3000	4000
780 (4 bar)	2"	500	500	500	750	750	750	1000	1000	1500	1750	3000	5000
800 (4 bar)	2"	500	500	750	750	750	750	1000	1000	1500	2000	3000	5000
840 (4 bar)	2"	500	500	750	750	750	1000	1000	1500	1500	1750	3000	5000
900 (4 bar)	2"	500	750	750	750	750	1000	1000	1500	1500	2000	3000	5000
1000 (4 bar)	2"	750	750	750	750	1000	1000	1500	1500	2000	2000	3000	6000
1100 (4 bar)	2"	750	750	750	1000	1000	1500	1500	1500	2000	2500	4000	6000
1200 (4 bar)	2"	750	750	1000	1000	1000	1500	1500	2000	2000	2500	4000	6000
1300 (4 bar)	2″	750	1000	1000	1000	1500	1500	1500	2000	2000	4000	4000	7500
1500 (4 bar)	2″	1000	1000	1000	1000	1500	1500	2000	2000	2500	4000	5000	10000
2000 (4 bar)	2 ½"	1500	1500	1500	1500	2000	2000	2000	2500	4000	5000	6000	10000

Example: If the boiler with 80.000 kcal / h capacity is to be operated with closed expansion system; 3 bar, safety valve must be used. The building to which this boiler is connected should be installed with 80 liters in 4 floors and 100 liters closed expansion in 5 floors.

Open expansion tank systems:

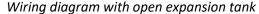
At the top of the system, the roof is put on the level difference and works open to the atmosphere. An expansion tank is placed at a slightly higher point than the highest point of the dispensing system to collect the expanded water volume. The water that expands in the boiler is stored in the expansion tank by means of a travel safety pipe. When the water in the installation is cooled, the water of the installation is completed by the expansion tank by means of the return safety pipe. As the expansion tank also opens the system to the atmosphere, it ensures the safety of the system by preventing the pressure in the heating installation to rise above atmospheric pressure. The venting pipes are opened from the expansion tank to the atmosphere and the air in the system is discharged. It is recommended to use separate expansion tanks according to their capacities for each boiler in the installation. That is, it is not correct to connect the two boilers to a single expansion tank. There are return and return safety pipes for each boiler and expansion tank. Valves, check valves etc. on these safety pipes. No fittings such as material should not be installed. Safety pipes must reach the nearest point of the boiler inlet and outlet by the shortest vertical path. Horizontal movement is only allowed at the level of the expansion tank and at minimum length.

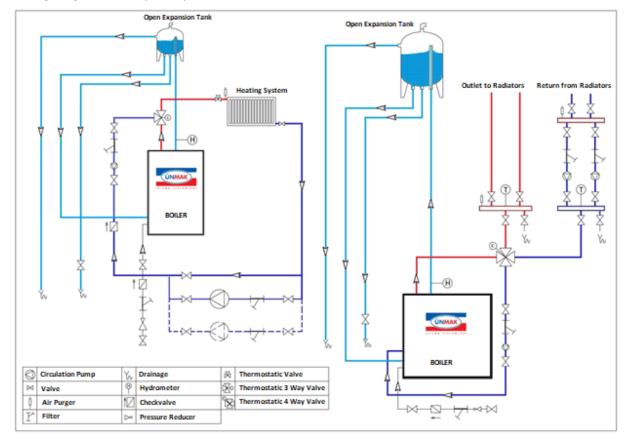
ÜNMAK solid fuel boilers must be connected to an installation with an open expansion tank in accordance with the installation diagram shown below. The circulation pump can be connected to the return or return line. If the pump is in the boiler return; the open expansion tank must be higher than the discharge head of the pump.

Warning about the water level:

After the first water is pressed into the system, the minimum water level must be marked on the hydrometer. Water level should be checked on a daily basis and water should be added to the installation when it falls below the minimum value.

<u>.</u>


Adding fresh water to the installation should only be carried out when the installation is cold.


Expansion tank volumes that must be rated according to the rated boiler capacity

BOILER POWER (kcal/h)	OPEN EXPANSION TANK VOLUME (It)	BOILER POWER (kcal/h)	OPEN EXPANSION TANK VOLUME (It)
25.000	50	400.000	750
34.000	50	420.000	750
45.000	90	450.000	750
60.000	90	480.000	750
80.000	110	500.000	750
100.000	210	510.000	750
120.000	210	540.000	1000
130.000	210	600.000	1000
150.000	210	660.000	1000
160.000	300	700.000	1000
180.000	300	720.000	1000
200.000	300	780.000	1200
210.000	300	800.000	1200
225.000	500	840.000	1300
240.000	500	900.000	1400
250.000	500	1.000.000	1500
270.000	500	1.100.000	1600
300.000	500	1.200.000	1800
330.000	500	1.300.000	2000
350.000	500	1.500.000	2250
360.000	750	2.000.000	2500
390.000	750		

Example: The volume of open expansion tank required for a 60,000 kcal / h boiler is 90 liters.

Open expansion tanks were selected by considering the open expansion volumes of Ünmak brand and panel radiator in the system.

Warning of corrosion in installation:

ÜNMAK boilers are extremely resistant to corrosion and therefore corrosion. However, all iron-based components in the heating installation (including installation pipes and radiators) must be protected against corrosion. Oxygen in the heating water causes oxidation of the iron surfaces resulting in rust and thus loss of material.

During the initial filling of the installation, the accumulated air must be evacuated. Usually, if the necessary measures are taken after the first filling, there is no damage caused by the oxygen in the water. Oxidation is mostly caused by oxygen which is involved in the heating water during operation. The main reasons are:

1. In systems with open expansion tank, oxygen is added to the system because the tank is open to the atmosphere. For this reason, the information given in this manual must be strictly observed in the open expansion tank dimensions, the position in the system and the safety connections.

2. Leaks in the system cause oxygen to be added to the heating water. Therefore, the lowest water pressure in the closed expansion tank system must be higher than the atmospheric pressure and periodic control of the operating pressure is required.

Warning against frost protection:

The heating installation must be completely isolated. Outdoor parts of the installation should be isolated more than the interior parts. If operating with an open expansion tank, the return and return pipes to the expansion line must be isolated or even the expansion tank must be isolated.

Considerations in new installations:

To minimize the addition of fresh water system design and sizing should be done correctly. None of the materials used in the installation must have a gas permeability. A maximum of 50 micron filters of synthetic or metal porous must be placed on the fresh water splicing line. In closed expansion systems, the pressure must be above atmospheric pressure throughout the installation.

Considerations for heating connected to old installations:

A long-term heating system produces a protective layer (black magnetite) on metal surfaces in contact with water. When a new boiler is installed in the old system, the clean surfaces of the boiler will be the first place to start corrosion. Therefore, when a new boiler is connected to the old heating system, in addition to the measures to be taken for new systems, the following issues should be considered:

1. The old system must be thoroughly rinsed to remove any impurities and sediments from the boiler before connecting.

2. A manual valve air separator must be installed at the top of the system.

Before installing a new boiler in the old heating installation, the installation must be washed several times with water.

The chimney must be cleaned before installation into the old chimney installations.

Each boiler chimney must be detached. Never connect more than one boiler to the same flue system.

CONTROL PANEL AND USER INTERFACE

Buttons and Explanations

ON/OFF button	Ċ	Used to open and close the control panel.
(+) (-) button		Used to input new value to the device. "Fan Adjustment", "Temperature Adjustment", "Fuel Feeding", "Fuel Standing"
ENTER	ENTER	Used to store set values and to access submenus from menu.
ESC	ESC	Used for output from the menu or submenu.
Fan Adjustment	*	Used to determine fan speed.

Temperature Adjustment	- AND	It ensures that the boiler water temperature stops when it reaches the set value.
Fuel Feeding		It is used to determine the time it takes to drive the fuel into the fire pot.
Fuel Standing		It is used to determine the waiting time after the fueling time.
Gearbox On/Off	•	The gearbox motor (fuel loading engine) of the boiler is switched on and off with this button.
Fan On/Off	•	The fan of the boiler is switched on and off with this button.
Manual Fuel Feed	•	It is used to load manual (manual) fuel into the boiler. As long as the button is pressed, fuel continues to drive.

Warning and error messages are located on the top right of the panel. When the fan, pump and gear unit are running, the lights on the sides of the vehicle are illuminated. When the fuel is exhausted in the hopper or when the fuel is squeezed in the ladle, the lights next to them are lit to indicate an error.

STARTING UP

The following steps should be followed for the initial start of the	boiler:
Check the installation for any obvious defects. If there is a fault, remove information from the "Information on Usage Errors İlişkin page.	
In closed systems, observe that the water is not removed from the manometer and the hydrometer in open systems. Add water if it is minimized.	bar Manometer Hydrometer
Check the power line of the boiler for any obvious defects. If there is a fault, look at information from the Information on Usage Errors page.	
Fill the hopper with fuel and close the cap tightly.	
Open the control panel by pressing the button seconds. When turned on, the blue graph will display values next to the Feed, Set Temperature, Standby variables. Since the buttons and and HEATING is not seen because the buttons are not pressed and the boiler does not work.	- Feeding : 5 sn. Set temp. : 40° Standby : 0.50
Open the boiler lower cover and hold the finger on the Manual Fuel Feed button on the control panel to allow the fuel to fill into the crucible, into the holes. When pressing the button, you will see the Reducer light in the upper right corner of the panel illuminate.	
It is useful to set the boiler water temperature to 60°C at the first start. To do so, press the Temperature Adjustment button on the panel. The display shows TEMPERATURE SET. You can press and hold the buttons until the desired temperature is set.	- Feeding : 5 sn. Set temp. : 40° Standby : 0.50 TEMP. SET
You can store them by pressing the ENTER button.	
Press the Fan Setting button of the panel. A rectangle will appear around the line in the upper left corner. Press the button once to increase the fan stage once again and the second shape. When you press the ENTER button, the setting of the fan you have set will be memorized and the display will be as in the third	Feeding : 5 sn. Set temp.: 60° Standby : 0.50

	E= Feeding : 5 sn. Set temp.: 60° Standby : 0.50 26° 000 sn.
	-= Feeding : 5 sn. Set temp.: 60° Standby : 0.50 26°
Find the Fuel Feed and Fuel Waiting settings in the "Fuel Waiting - Feed Settings" section of your manual, according to the boiler capacity and fuel type. Press the Fuel Feed button to set the amount of fuel to be fed into the boiler. Press the ENTER button after setting	-= Feeding : 5 sn. Set temp.: 60° Standby : 0.50 FEEDING SET
the power supply setting. Press the Fuel Waiting button for the standby setting. Press the ENTER button after setting the standby setting.	-= Feeding : 4 sn. Set temp.: 60° Standby : 0.50 FEEDING SET
Set some materials to easily ignite and then ignite the boiler. Later Close the boiler doors and press the on the panel. The Fan lamp on the upper right side of the control panel will illuminate and HEAT will appear on the display.	-= Feeding : 4 sn. Set temp.: 60° Standby : 3.30 HEATING
If the ignition aids in the boiler ignite the fuel, press the Reducer On / Off button to switch on the gear unit. The on / off button on the gear unit will light up. The gearbox lamp in the upper right corner of the control panel will only be activated when the gear unit is running.	-= 35° Feeding : 4 sn. Set temp.: 60° Standby : 3.30 WAIT
The countdown timer at the right-hand corner of the display counts down from the minute value set for standby to seconds in which the text WAIT is displayed.	HEATING

Overheating of the fan speed will cause some heat to be discharged from the chimney. In the case of combustion, one to one and a large amount of air will cause adhesion to the slag. It can be played with feed and standby settings to prevent the unburned fuel from falling off the pot.

FUEL FEEDING – STAND BY ADJUSTMENT

The following table can be used for feeding and standby settings that can be set from the control panel of the ÜNMAK automatic feed boilers.

I	Power (Mcal/h)	25	34	45	60	80	100	120	130	150	160	180	200	210	225	240
6.000 kcal/kg.h	Stand by (min)	04:50	04:30	04:10	04:10	04:10	03:30	03:40	03:50	03:40	03:50	03:40	03:40	03:50	03:30	03:30
High Quality Fuel	Feeding (sec)	4	5	6	8	11	11	7	8	9	10	11	12	13	13	14
4.000 kcal/kg.h	Stand by (min)	03:20	03:30	03:30	03:20	03:20	03:20	03:20	03:30	03:30	03:30	03:20	03:20	03:20	03:30	03:20
High Quality Fuel	Feeding (sec)	4	6	8	10	13	16	10	11	13	14	15	17	18	20	21
3.500 kcal/kg.h	Stand by (min)	01:20	01:30	01:30	01:30	01:30	01:20	01:30	01:20	01:20	01:30	01:20	01:20	01:00	01:10	01:00
High Quality Fuel	Feeding (sec)	2	3	4	5	7	7	5	5	6	7	7	8	6	8	7

	Power (Mcal/h)	250	270	300	330	350	360	390	400	420	450	480	500	510
6.000 kcal/kg.h	Stand by (min)	03:50	03:50	03:50	04:00	03:50	04:00	04:00	04:00	04:00	04:00	03:50	03:50	03:40
High Quality Fuel	Feeding (sec)	16	17	19	22	23	24	27	20	21	23	23	25	23
4.000 kcal/kg.h	Stand by (min)	03:20	03:20	03:10	03:00	03:00	03:00	03:00	03:00	03:00	03:00	03:00	03:00	02:40
High Quality Fuel	Feeding (sec)	22	24	25	26	28	29	32	24	25	27	29	31	27
3.500 kcal/kg.h	Stand by (min)	01:10	01:00	01:00	01:10	01:00	01:00	01:00	01:00	01:10	01:10	01:10	01:10	01:10
High Quality Fuel	Feeding (sec)	9	8	9	12	11	12	12	9	11	12	13	14	14

	Power (Mcal/h)	540	600	660	700	720	780	800	840	900	1000	1100	1200
6.000 kcal/kg.h	Stand by (min)	03:40	03:20	03:20	03:20	03:20	03:00	03:00	02:50	02:50	02:20	02:10	02:00
High Quality Fuel	Feeding (sec)	25	25	28	30	31	30	31	31	34	30	32	33
4.000 kcal/kg.h	Stand by (min)	02:40	02:30	02:20	02:20	02:20	02:10	02:10	02:00	01:50	01:30	01:20	01:20
High Quality Fuel	Feeding (sec)	28	30	31	34	35	36	37	37	37	33	34	38
3.500 kcal/kg.h	Stand by (min)	01:10	01:00	01:00	01:00	00:50	00:50	00:50	00:50	00:40	00:30	00:30	00:30
High Quality Fuel	Feeding (sec)	15	14	16	17	15	16	17	18	16	15	17	19

The values given according to the capacities in the table will vary depending on the degree of insulation in the environment where the boiler is heated, the chimney pull, and the thermal comfort of the space.

MAINTENANCE AND BOILER CLEANING

Regular maintenance is required by expert teams according to the manufacturer's instructions for the efficient operation of your system.

Regular checks:

- The water level should always be checked. Hydrometer (water level indicator) should be marked after open filling system and pressure gauge shall be marked after the first filling of the system. The water pressure level indicated when the water is cold in the manometer should be checked when the water is cold, as the water pressure will increase as the water heats up. If the water level or pressure has fallen below the static pressure or system setting, water should be added to the system (when the boiler is cold). To protect the system and the boiler from corrosion, the water to be fed into the system must be softened according to the local settings.
- Check that the front doors are closed properly, if necessary, the door seals should be replaced.
- Check for gas leaks from the flue connection. If there is a leak, it should be repaired.
- The boiler heating surfaces must be checked. The establishment of the institution depends on the type of fuel used and the amount of combustion air. If it is understood that the leaving water temperature does not rise to the values that are generally in the usual conditions, the boiler surfaces are processed, the heat transfer surfaces of the boiler should be cleaned.
- Check that the fan is working properly. Unbalanced, balanced fan makes periodic noises. If there are dust or ash collected between the fins of the fan, it is necessary to clean it by blowing it without disturbing the blade structure or holding the dryer.

Cleaning the boiler:

The boiler should be done when it is cold. Before cleaning the boiler, the pump and electrical devices connected to the system must be switched off.

To clean the boiler:

- Smoke pipes of the boiler should be cleaned with cleaning brush supplied with the boiler. When the brush is inserted into the pipes, it must be fully pushed and retracted. Otherwise, the wire brush's wires will not return in the pipe and will not allow you to retract the brush.
- The pitch of the boiler will form a layer and it will prevent the energy released in the boiler from passing into the water and will cause a decrease in productivity. To prevent this situation, all heating surfaces of the boiler should be cleaned at regular intervals or as required by the aid of squeegee.
- The ashes accumulated in the smoke hood under the chimney and in the front of the furnace ash cleaning door in the front of the casting hob should be cleaned periodically or as needed.
- The control panel must be protected from dust and moisture. The terminals behind the panel must remain dust-free.
- The boiler can be cleaned as necessary.

Maintenance:

The contracted service of the system before each working season; boiler, installation, electrical connections, chimneys, we strongly recommend that you call our authorized service. Do not do any maintenance work without the help of an expert.

INFORMATION ON USAGE ERRORS

PROBLEM	CAUSE	SOLUTION
Insufficient heating	 Boiler heat transfer surfaces can be covered with work and soot 	Clean with cleaning rod (the boiler should not burn)
	Used fuel may be of poor quality	• Change your fuel and take a little before refueling.
	Pump may not be running	 Call service, make sure that the control panel is plugged in.
	Insufficiency of insulation	 Increase the heat insulation of the space where the boiler is installed
	 Feed - Standby settings may be incorrect. 	 Enter the correct settings from the Feed - Standby settings page. Or correct the settings by observing the flame.
Burning is not good	Combustion air may be low	• Make sure that the fan is working and that the valve is not closed.
	Chimney extraction may be low	 Check that there are no holes or cracks in the chimney. If you still can't, consult your leg. Isolate your chimney.
Smoke from the hopper	 The wick on the hopper cover may not be well pressed or worn on the surface. 	 Make sure that the roving on the cover is fully pressed against the surface, and replace if necessary.
	Chimney extraction may be low	• Check that there are no holes or cracks in the chimney. If you still can't, consult your leg. Have your chimney sealed.
Smelting of smoke pipes	Burning of plastics-derived fuels in the boiler	• Do not dispose of wastes of plastic derivative into the boiler or fuel reservoir (hopper).
	• The chimney may not heat up	• Check that there are no holes or cracks in the chimney. If you still can't, consult your leg. Have your chimney sealed.
	Poor use of fuel may be	Change your fuel
Excessive fuel consumption	High chimney traction	• Check that there are no holes or cracks in the chimney. If you still can't, consult your service.
	 Air may be too high 	Reduce fan speed.
	• Space isolation may be insufficient	• Increase the heat insulation of the space where the boiler is installed
	 Feed - Standby settings may be incorrect 	• Enter the correct settings from the Feed - Standby settings page. Or correct the settings by observing the flame.
Smoke gas leak from the boiler front doors	Cover seals may be worn	Replace the seals.
	Covers may be deformed	• Ensure that combustion does not withstand the covers. Consult the authorized service center for deformed caps.
Failure of the boiler to reach the set temp.	Temperature sensor tip may be pulled out of the slot	Replace the temperature sensor end of the control panel board by lifting the boiler top cover. Pour the heat transfer oil into the housing.
	 The control panel may not be receiving power 	 Connect the control panel to the mains. If not, call for service.
Heating of the expansion tank	Expansion tank may be affected by pump	 Increase the expansion tank or lower the pump speed. In case of open expansion, if the pump is rotating, take it to the outgoing line.
Partial heating of radiators	Air in the radiator	 Remove air from radiator purifiers. Make sure that the line to the expansion tank is constantly upward. For closed expansion systems, make sure that the automatic valve plug is not tightened.

PROBLEM	CAUSE	SOLUTION
Burn out	 Air may be supplied by the fan at very high flow rate without full ignition Very high fuel supply 	 Reduce the fan air setting. Reduce the feed setting from the fuel supply setting.
Noise of noisy water from the boiler	• There may be air left in the boiler to fill the first water	Refer to the initial start-up.
Problems with the use of fuels such as fruit kernels and nut shell	 Flammable fuel in the combustion chamber Burning out too quickly 	Reduce fan air.
Fast burning of fuels such as fruit kernels and nut shell	 Fast burning of fuels such as fruit kernels and nut shell 	Reduce fan air.
Boiler water temperature was too high, now dropped but boiler not working	Limit thermostat may be switch off	 Tear off the black plastic cover on the back of the control panel. Activate the limit thermostat by pressing the red pin. Turn the control panel off and on. Turn the control panel off and on. Limit Thermostat
Panel over-fuel warning is on Fuel slammed	 Fuel in hopper The probe may be displaced The probe may not feel A hard object may be stuck in the fuel 	 Add fuel to hopper Insert the probe into its slot Replace the probe Contact Service
warning light on panel	coil	• Do not remove the sieve when pouring fuel into the hopper
There is no power to the control panel.	 The mains plug may not be plugged in. Electricity may be interrupted The glass fuse on the control board may have blown. 	 Plug in the power plug. Try again when electricity Replace the glass fuse on the control board inside the control panel.

Do not open the boiler doors and the hopper door in case of power cuts; do not add water to the boiler.

ÜNLÜSOY YAPI MALZEMELERİ SANAYİ ve TİCARET LİMİTED ŞİRKETİ

Address: Pancar Organize Sanayi Bölgesi, 2. Etap No:2, Torbalı/İZMİR – TURKEY Tel: +90 444 35 32, Fax: +90 232 469 2412 www.Ünmak.com